
Antiferromagnetic Ising model in small-world networks

Carlos P. Herrero
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco,

28049 Madrid, Spain
�Received 15 January 2008; published 2 April 2008�

The antiferromagnetic Ising model in small-world networks generated from two-dimensional regular lattices
has been studied. The disorder introduced by long-range connections causes frustration, which gives rise to a
spin-glass phase at low temperature. Monte Carlo simulations have been carried out to study the paramagnetic
to spin-glass transition, as a function of the rewiring probability p, which measures the disorder strength. The
transition temperature Tc goes down for increasing disorder, and saturates to a value Tc�1.7J for p�0.4, J
being the antiferromagnetic coupling. For small p and at low temperature, the energy increases linearly with p.
In the strong-disorder limit p→1, this model is equivalent to a short-range �J spin glass in random networks.
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I. INTRODUCTION

In the last few years, there has been a surge of interest in
modeling complex systems as networks or graphs, with
nodes representing typical system units and edges playing
the role of interactions between connected pairs of units.
Thus, complex networks have been used to model several
types of real-life systems �social, economic, biological, tech-
nological�, and to study various processes taking place on
them �1–5�. In this context, some models of networks have
been designed to explain empirical data in several fields, as
is the case of the so-called small-world networks, introduced
by Watts and Strogatz in 1998 �6�.

These small-world networks are well suited to study sys-
tems with underlying topological structure ranging from
regular lattices to random graphs �7,8�, by changing a single
parameter �9�. They are based on a regular lattice, in which a
fraction p of the links between nearest-neighbor sites are
replaced by new random connections, creating long-range
“shortcuts” �6,9�. In the networks so generated one has at the
same time a local neighborhood �as in regular lattices� and
some global properties of random graphs, such as a small
average topological distance between pairs of nodes. These
networks are suitable to study different kinds of physical
systems, as neural networks �10� and manmade communica-
tion and transportation systems �6,11,12�. The importance of
a short global length scale has been emphasized for several
statistical physical problems on small-world networks.
Among these problems, one finds the spread of infections
�13,14�, signal propagation �6,15,16�, random spreading of
information �17–21�, as well as site and bond percolation
�14,22,23�.

Cooperative phenomena in this kind of networks are ex-
pected to display unusual characteristics, associated to their
peculiar topology �24–27�. Thus, a paramagnetic-
ferromagnetic phase transition of mean-field type was found
for the Ising model on small-world networks derived from
one-dimensional �1D� lattices �24,28,29�. This phase transi-
tion occurs for any value of the rewiring probability p�0,
and the transition temperature Tc increases as p is raised. A
similar mean-field-type phase transition was found in small-
world networks generated from 2D and 3D regular lattices

�30,31�, as well as for the XY model in networks generated
from one-dimensional chains �32�. In recent years, the Ising
model has been thoroughly studied in complex networks,
such as the so-called scale-free networks, where several un-
usual features were observed �33–36�.

Here we study the antiferromagnetic �AFM� Ising model
in small-world networks generated by rewiring a 2D square
lattice. One expects that the AFM ordering present in the
regular lattice at low temperature will be lost when random
connections are introduced, for an increasing number of
bonds will be frustrated as p rises. In particular, this model
includes the two basic ingredients necessary to have a spin
glass �SG�, namely, disorder and frustration. The former ap-
pears due to the random long-range connections introduced
in the rewiring process, and the latter because half of these
rewired links connect sites located in the same sublattice of
the starting regular lattice.

In some spin-glass models, such as the Sherrington-
Kirkpatrick model, all spins are mutually connected �37,38�.
An intermediate step between these globally connected net-
works and finite-dimensional models consists in studying
spin glasses on random graphs with finite �low� connectivity
�39–42�. A further step between random graphs with finite
mean connectivity and regular lattices is provided by small-
world networks, where one can modify the degree of disor-
der by changing the rewiring probability p. Then, for the
AFM Ising model on small-world networks, we expect to
find features close to those of short-range spin-glass systems.
In this line, a spin-glass phase has been recently found and
characterized for the AFM Ising model in scale-free net-
works �43�. In this paper, we employ Monte Carlo �MC�
simulations to study the paramagnetic to spin-glass phase
transition occurring in small-world networks. Apart from
temperature and system size, another variable is the rewiring
probability, which controls the degree of disorder, and allows
us to interpolate from a paramagnetic-AFM transition at p
=0 to a paramagnetic-SG transition in a random graph at p
=1.

The paper is organized as follows. In Sec. II we describe
the networks and the computational method employed here.
In Sec. III we give results for the heat capacity, energy, and
spin correlation, as derived from MC simulations. In Sec. IV
we present and discuss the overlap parameter, transition tem-

PHYSICAL REVIEW E 77, 041102 �2008�

1539-3755/2008/77�4�/041102�7� ©2008 The American Physical Society041102-1

http://dx.doi.org/10.1103/PhysRevE.77.041102


perature, and absence of long-range ordering. The paper
closes with the conclusions in Sec. V.

II. MODEL AND METHOD

We consider the Hamiltonian:

H = �
i�j

JijSiSj , �1�

where Si= �1 �i=1, . . . ,N�, and the coupling matrix Jij is
given by

Jij � �J��0� if i and j are connected,

0 otherwise.
	 �2�

This means that each edge in the network is an AFM inter-
action between spins on the two linked nodes. Note that,
contrary to the usually studied models for spin glasses, in
this model all couplings are antiferromagnetic. This model
with AFM couplings can be mapped onto one in which all
unrewired bonds are ferromagnetic �FM�, and the rewired
links are 50% FM and 50% AFM. In the limit p→0, this
mapping is the well-known correspondence between AFM
and FM Ising models on bipartite lattices �44�. In the limit
p→1, our AFM Ising model is equivalent to a spin-glass
model on a random graph of mean connectivity 
k�=4, with
50% AFM and 50% FM bonds.

Small-world networks have been built up according to the
model of Watts and Strogatz �6,9�, i.e., we considered in turn
each of the bonds in the starting 2D lattice and replaced it
with a given probability p by a new connection. In this re-
wiring process, one end of the selected bond is changed to a
new node chosen at random in the whole network. We im-
pose the conditions: �i� no two nodes can have more than one
bond connecting them and �ii� no node can be connected by
a link to itself. With this procedure we obtained networks
where more than 99.9% of the sites were connected in a
single component. Moreover, this rewiring method keeps
constant the total number of links in the rewired networks,
and the average connectivity 
k� coincides with z=4. This
allows us to study the effect of disorder upon the physical
properties of the model, without changing the mean connec-
tivity.

We note that other ways of generating small-world net-
works from regular lattices have been proposed �22,45�. In
particular, instead of rewiring each bond with probability p,
one can add shortcuts between pairs of sites taken at random,
without removing bonds from the regular lattice. This proce-
dure turns out to be more convenient for analytical calcula-
tions, but does not keep constant the mean connectivity 
k�,
which in this case increases with p. Spin glasses on such
small-world networks, generated from a one-dimensional
ring, have been studied earlier by replica symmetry breaking
�46� and transfer matrix analysis �47�.

From the 2D square lattice, we generated small-world net-
works of different sizes. The largest networks employed here
included 200�200 nodes. Periodic boundary conditions
were assumed. For a given network, we carried out Monte
Carlo simulations at several temperatures, sampling the spin

configuration space by the Metropolis update algorithm �48�,
and using a simulated annealing procedure. Several variables
characterizing the considered model have been calculated
and averaged for different values of p, T, and system size N.
In general, we have considered 300 networks for each rewir-
ing probability p, but we used 1000 networks to determine
accurately the transition temperature from paramagnetic to
SG phase. In the following, we will use the notation 
¯� to
indicate a thermal average for a network, and �¯� for an
average over networks with a given degree of disorder p.

III. THERMODYNAMIC OBSERVABLES

The heat capacity per site, cv, was obtained from the en-
ergy fluctuations �E at a given temperature, by using the
expression

cv =
���E�2�

NT2 , �3�

where ��E�2= 
E2�− 
E�2. We have checked that the results
coincide within numerical noise with those derived by calcu-
lating cv as �d
E� /dT� /N. Note that we take the Boltzmann
constant kB=1.

The temperature dependence of cv is displayed in Fig. 1
for several values of the rewiring probability p and for net-
works built up from a 80�80 2D lattice. For increasing p,
one observes two main features: the maximum of cv shifts to
lower T and the peak broadens appreciably. This broadening
agrees with the behavior expected for systems with increas-
ing disorder, similarly to that found for the FM Ising model
in these networks �30�. However, in the AFM model, the
shift of the peak to lower temperature suggests a phase tran-
sition with a temperature Tc that decreases as p is raised,
contrary to the FM case, where an increase in Tc with p was
observed. This difference between both Ising models on
small-world networks occurs in addition to the nature of the
transition itself, which in the FM case is a paramagnetic-
ferromagnetic transition vs a paramagnetic-SG transition in
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FIG. 1. Heat capacity per site cv vs temperature for small-world
networks generated from a 2D lattice of size 80�80. The plotted
curves correspond to different values of the rewiring probability p.
From top to bottom: p=0.1, 0.3, 0.5, and 1.
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the AFM model �see below�. A decrease in Tc for the AFM
Ising model in this kind of networks was also suggested in
Ref. �49� from the behavior of the heat capacity for several
values of p.

The increase in disorder as p is raised is accompanied by
an increase in frustration of the links at low temperatures.
This can be quantified by the low-temperature energy of the
system, which will rise as the rewiring probability is raised.
To obtain insight into this energy change for p near zero �low
disorder�, let us remember that the square lattice is bipartite,
in the sense that one can define two alternating sublattices,
say A and B, so that neighbors of each node in sublattice A
belong to sublattice B, and vice versa. In the rewiring pro-
cess, one introduces links between nodes in the same sublat-
tice, and the resulting networks are no longer bipartite. How-
ever, for small rewiring probability p, we can still speak
about two sublattices, with some “wrong” connections. Since
each link is rewired with probability p, each connection in
the starting regular lattice will be transformed into a wrong
connection �of types A-A or B-B� with probability p /2. The
remaining links are of A-B type, and the number of wrong
connections is on average zNp /4. Then, for small p, the low-
est energy can be approximated by Em=−zNJ�1− p� /2, under
the assumption that the AFM long-range ordering of the
square lattice is still preserved. For z=4, we have an energy
per node: em=−2�1− p�J. Note that for finite p the low-
temperature long-range ordering in fact decays due to the
appearance of domains driven by the rewired connections
�see below�, but the AFM ordering is a good reference to
obtain insight into the energy change as a function of rewir-
ing probability p.

We now turn to the results for the minimum energy
reached in our simulations for different p values, which are
shown in Fig. 2. For rising p, Em increases from the value
corresponding to AFM ordering in the regular lattice, em
=−zJ /2. The dashed line in Fig. 2 displays the behavior
expected for small p, in the case of a strict AFM ordering on

the underlaying lattice. This estimation is close to the mini-
mum energy obtained in our simulations for p�0.15. For
larger p values, it departs appreciably from the results of the
simulations, and em lies below the dashed line. In the limit
p=1 we find a value em=−1.444�2�J. In this limit, our small-
world networks are very close to random networks with a
Poisson distribution of connectivities, but are not identical to
the latter because of the restriction that no nodes have zero
links, imposed in the rewiring process �15,24�. For a �J
Ising spin glass on random graphs with a Poisson distribution
of connectivities and 
k�=4, Boettcher �41� found a ground-
state energy em=−1.431�1�J by using extremal optimization.
This value is plotted in Fig. 2 as a dotted line close to p=1,
and is near the minimum energy we found for the small-
world networks in this limit. For a more direct comparison
with random networks, we have carried out some simulations
for small-world networks with p=1, where we allowed the
presence of isolated sites �with connectivity k=0�. For the
AFM Ising model in these networks, we found a minimum
energy em=−1.438�2�J, between those of our standard net-
works �with minimum connectivity k=1� and random net-
works in Ref. �41�. Note that our error bar in em corresponds
to a standard deviation in the distribution of minimum en-
ergy obtained for different networks. We emphasize that the
energy em found here for each value of p is an upper limit for
the lowest energy of the system.

Even though the random connections present in small-
world networks introduce disorder in the starting regular lat-
tice, these networks still keep memory of the original bipar-
tite lattice, but the actual meaning of the partition in two
sublattices is gradually reduced as p rises. This can be mea-
sured by the number of wrong links, which amounts to a
fraction p /2 of the total number of links, as indicated above.
In the limit p=1, half of the links connect sites in the same
original sublattice, and the memory of the partition in sub-
lattices has completely disappeared. One can visualize the
loss of AFM ordering on the 2D lattice, by plotting the spin
correlation vs distance for several values of p. We define � as

��r� = �
SiSj�r� , �4�

where the subscript r indicates that the average is taken for
the ensemble of pairs of sites at distance r. Note that r
=d /d0 refers here to the dimensionless distance between sites
in the starting regular lattice, not to the actual topological
distance or minimum number of links between nodes in the
rewired networks �d0 is the distance between nearest neigh-
bors�. The correlation ��r� is shown in Fig. 3 for several
values of the rewiring probability p, at temperature T=1.5J.
This temperature is below the critical temperature Tc of the
paramagnetic-SG transition for all values of p �see below�.
As expected, ��r� decreases faster for larger p, and vanishes
at p=1 for any distance r�1. In general, after a short tran-
sient for small r, we find an exponential decrease of the spin
correlation with the distance. This indicates that, in spite of
the disorder present in the networks for p�0, there remains
some degree of short-range AFM ordering on the starting
regular lattice, which is totally lost in the limit p→1.
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FIG. 2. Minimum energy per site obtained in our simulations for
the AFM Ising model on small-world networks with N=104 nodes.
The dashed line corresponds to em= �−2+2p�J, as explained in the
text. The dotted line indicates the ground-state energy obtained in
Ref. �41� for a spin glass on random networks with 
k�=4. The solid
line is a guide to the eye.
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IV. SPIN-GLASS BEHAVIOR

A. Overlap parameter

As is usual in the study of spin glasses, we now consider
two copies of the same network, with a given realization of
the disorder, and study the evolution of both spin systems
with different initial values of the spins and different random
numbers for generating the spin flips �50,51�. It is particu-
larly relevant the overlap q between the two copies, defined
as

q =
1

N
�

i

Si
�1�Si

�2�, �5�

where the superscripts �1� and �2� denote the copies. Obvi-
ously, q is defined in the interval �−1,1�.

We have calculated the overlap parameter q for small-
world networks with various rewiring probabilities p, and
obtained its probability distribution P�q� from MC simula-
tions. This distribution is shown in Fig. 4 for p=0.1 and 0.5
at several temperatures. At high temperature, P�q� shows a
single peak centered at q=0, characteristic of a paramagnetic
state. The width of this peak is a typical finite-size effect,
which should collapse to a Dirac 	 function at q=0 in the
thermodynamic limit N→
. When the temperature is low-
ered, the distribution P�q� broadens, as a consequence of the
appearance of an increasing number of edges displaying frus-
tration. At still lower temperatures, two peaks develop in
P�q�, symmetric respect to p=0, and characteristic of a spin-
glass phase �43,51,52�.

Information on the “freezing” of the spins as temperature
is lowered can be obtained from the evolution of the average
value of �q�, for a given degree of disorder p. This average
value is shown in Fig. 5 as a function of temperature for
several rewiring probabilities p. It is close to zero at the
high-temperature paramagnetic phase, and increases as tem-
perature is reduced, indicating a break of ergodicity associ-
ated to the spin-glass phase �43,51�. For p=0, �q� converges

to unity at low temperatures, reflecting the AFM ordering
present in the regular lattice. For increasing p, we find a
decrease in the low temperature �q� values, due to an increas-
ing degree of frustration.

B. Transition temperature

The overlap parameter q can be used to obtain accurate
values of the paramagnetic-SG transition temperature, by us-
ing the fourth-order Binder cumulant �48,51�

gN�T� =
1

2
3 −

�
q4��N

�
q2��N
2 � . �6�

This parameter can change in the interval �0,1�. One has
gN=0 for a Gaussian distribution P�q� �high temperatures�,
and gN=1 when �q�=1 �in the particular case of a single
ground state�. In general gN rises for decreasing temperature,
and Tc can be obtained from the crossing point for different
network sizes N. As an example, we present in Fig. 6 gN�T�
as a function of temperature for several system sizes and a
rewiring probability p=0.05. From the crossing point we find
Tc /J=2.175�0.005 for this value of p.
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FIG. 3. Absolute value of the spin correlation function vs dis-
tance in small-world networks with N=104 nodes, at temperature
T=1.5J. The dimensionless distance between nodes r=d /d0 is mea-
sured on the starting regular lattice. Data are shown for several
values of p, as indicated by the labels.
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FIG. 4. Distribution of the overlap parameter q for two rewiring
probabilities and various temperatures, as derived from our simula-
tions for networks with N=104 nodes. �a� p=0.1 at T /J=2.4, 2.1,
and 1.7 and �b� p=0.5 at T /J=1.7, 1.3, and 1.
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By using this procedure, we have calculated the transition
temperature Tc for several values of p, and the results so
obtained are shown in Fig. 7. For small p, Tc decreases lin-
early from the transition temperature corresponding to the
AFM model on the 2D square lattice, and for p�0.4 it satu-
rates to a value of about 1.7J. Close to p=0, we find a
change in Tc induced by the long-range links: Tc=Tc

0−apJ,
where Tc

0 is the paramagnetic-AFM transition temperature in
the square lattice and a�2.

It is interesting the approximately linear decrease in Tc for
increasing p up to p�0.3. This decrease could be expected
from the larger number of frustrated links appearing as p is
raised. For increasing frustration, the paramagnetic phase is
favored, and the spin glass appears at lower temperature �Tc
is reduced�. This change of Tc as a function of rewiring prob-
ability could be also expected from the behavior of the heat

capacity shown in Fig. 1. For p�0.4, small-world networks
behave in this respect similarly to Poissonian random net-
works, in the sense that the transition temperature is roughly
independent of p, and is close to that found for the strong-
disorder limit p=1.

C. Absence of long-range AFM ordering

Even though all data indicate that the AFM Ising model in
small-world networks yields a spin-glass phase at low tem-
perature, one can ask if such disordered phase appears for
any finite value of the rewiring probability. One could argue
that some residual long-range AFM ordering could be
present for finite but small p values. From our considerations
in the preceding sections, one could think that, for small p,
the low-temperature phase still keeps the long-range ordering
characteristic of the 2D regular lattice, with some defects
caused by the long-range connections. To analyze this ques-
tion, we consider a staggered magnetization defined for the
square lattice as usual:

Ms = MA − MB, �7�

with

MA = �
i�A

Si, �8�

and similarly for MB. Our question then refers to the possi-
bility of a finite value for Ms for small-world networks with
p�0.

To check this point, we have carried out simulations start-
ing from an AFM ordered configuration and followed the
evolution of Ms. We prefer this procedure to directly calcu-
lating the low-temperature staggered magnetization from
simulated annealing, since in this case a long-range ordering
can be difficult to find for large networks, due to the appear-
ance of different spin domains. Thus, we analyzed the decay
of Ms at temperatures lower than the transition temperature
Tc for different system sizes. In particular, in Fig. 8 we show
the relaxation of �Ms� on networks with p=0.1 at a tempera-
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FIG. 5. Average of the absolute value of the overlap parameter
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q�� for various rewiring probabilities p and several temperatures.
Symbols are data points derived from MC simulations on networks
of size N=104.
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ture T=1.7J, well below the transition temperature for this
rewiring probability �Tc /J=2.10�0.01�. For each system
size, �Ms� decreases from unity to reach a plateau at a finite
value, which is clearly a finite-size effect, as seen in the
figure. As the system size increases, such a plateau appears
after longer simulation times, and the corresponding value of
�Ms� decreases. These results are consistent with the decay of
the spin correlation ��r� at temperatures below Tc, as pre-
sented in Fig. 3 for several values of p.

For p�0.1, a relaxation of Ms is expected to appear for
larger system sizes and longer simulation runs. Everything
indicates that at low T the long-range ordering disappears in
the thermodynamic limit N→
 for any p�0. This is in line
with earlier results for the FM Ising model on this kind of

networks, in the sense that the paramagnetic-FM transition
occurring in those systems changes from an Ising-type tran-
sition at p=0 to a mean-field-type one �typical of random
networks� for any finite value of the rewiring probability p
�0 �24�. The observation of this mean-field character for the
paramagnetic-FM transition requires system sizes that in-
crease as the rewiring probability is lowered �30�, similarly
to the decay of the staggered magnetization in the AFM case
shown here.

V. CONCLUSIONS

The combination of disorder and frustration in the AFM
Ising model on small-world networks gives rise to a spin-
glass phase at low temperatures. The transition temperature
from a high-temperature paramagnet to a low-temperature
spin-glass phase goes down for increasing disorder, and satu-
rates to a value Tc�1.7J for p�0.4.

The overlap parameter provides us with clear evidence of
the frustration associated to the spin-glass phase at low tem-
peratures. The degree of frustration increases as the disorder
�or rewiring probability� rises. For small rewiring probability
p, the energy of the ground state increases linearly with p up
to p�0.15, and for larger p, it converges to em=−1.44J. In
the limit p→1 one recovers the behavior of a �J Ising spin
glass in random networks. An interesting feature of the phys-
ics here is that a small fraction of random connections is able
to break the long-range AFM ordering present in the 2D
square lattice at low temperature.
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